Seminario

Facoltà di Agraria - Università di Firenze - 31 maggio 2012

Managing forests as complex adaptive systems: From theory to practice

Christian Messier Klaus Puettmann

Outline

Background
 Scientific work

 Thinning
 Species mixture
 Adaptability tradeoffs

Resilience

Ecologists

 "respond to change in a ways that sustain fundamental functions, structure, identity, and feedbacks" (after Chapin et al. 2009)

ilviculturists

"... sustain ecc

- (\$, water, w

J. Goldammer

Complexity science

PLEATTY AND THE COMMONS STRUCT CRITIQUE of SILVICULTURE

Managing for Complexity

Klaus J. Prettmann, K. David Coates, and Christian Messier

Complex Adaptive Systems

Negative feedback

Complex Adaptive Systems

Complex, adaptive systems

- stable states are the exception, rather than the norm
- can be unpredictable
- can withstand substantial perturbations, i.e., be remarkably robust (adapted to current conditions)
- can be quite responsive (adaptable) to perturbations (threshold)

Scientific Progress:

- Test hypotheses
 - Model prediction
 - Experiments

H₀: Forests = Complex adaptive systems – better able to adapt to "surprises" and maintain ecosystem services

H_a: Forests = Alternative hypotheses

Threshold

Van Nes and Scheffer 2007 AmerNat

Critical slowing down = autocorrelation

Threshold

Scheffer et al. 2009, Nature

Ecosystem dynamics

Ecosystem dynamic

Diversity

Mechanistic view of "adaptability"

"Species don't matter - What species do matters"

Plant traits: Functional group

Insect pollinated species

A. Neill, in prep.

Plant traits: Response types

Insect pollinated species

A. Neill, in prep.

Thinning increases likelihood that selected wildlife habitat functions are maintained in light of climate change.

Mixed species stands – redundancy ?

Species choice:

- Compatibility of growth patterns
- Overyielding
- = focus on functional type

Criteria for species choice include enhancing response type diversity, e.g.:

- sprouting ability,
- drought tolerance,
- disease resistance

Managing forests as CAS

Adaptive capacity